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Elastic critical behavior in a three-dimensional model for polymer gels
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The elastic response in polymeric gels is studied by means of a percolation dynamic model. By numerical
simulations the fluctuations in the gyration radius and in the center-of-mass motion of the percolating cluster
are determined. Their scaling behavior at the gelation threshold gives a critical exponent for the elastic
modulusf ;2.560.1 in agreement with the predictionf 5dn.
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I. INTRODUCTION

The elastic response in polymer gels is due to the p
ence of the polymeric network formed in the gelation p
cess: this random structure makes the system able to res
to external stresses. Due to the large possibility of conform
tional changes that characterizes this macromolecular ph
there is an entropic term contributing to the elastic proper
of the system. This picture is typical of gelling systems a
may fit a wide range of very different materials. Then b
cause of the different role played by the entropic term a
the particular features of the polymeric networks, a rich p
nomenology is produced.

The viscoelastic behavior of gelling materials and t
mechanisms at its origin certainly represent a central issu
soft matter physics and have a high relevance to a wide ra
of applications from food processing to materials science.
the other hand these materials show many typical feature
complex systems and their study is connected to some
damental problems in soft matter physics, from the entro
elastic behavior, which we are interested in here, to gla
dynamics. As a consequence these systems are intens
investigated both experimentally and by means of statist
mechanics models, bringing up a lively debate.

In particular, here we study the critical behavior of t
elastic response of the system as the gelation process
place producing the polymeric network: in a gelling syste
the elastic modulus starts growing at the gelation thresh
with a power law behavior, usually expressed in terms of
polymerization degree. In the experiments performed on
ferent gelling materials the value of the critical exponenf
describing the critical behavior of the elastic modulus a
pears to be close to eitherf ;2, or f ;3, or elsef ;4. The
value f ;2 is actually observed in experiments on agaro
gel @1#, gelatin gels@2#, some silica gels@tetraethoxysilane
~TEOS!# @3#. Within statistical mechanics models it corr
sponds to the prediction based on the de Gennes ana
between the elasticity of a percolating random network
Hookean springs and the conductivity in a random perco
ing network of resistors@4,17#. The critical exponentf ;3.
has been observed in diisocyanate/triol gel@7#, in epoxy res-
ins @8#, tetramethoxysilane~TMOS! silica gels@9#, polyester
gels@10#. It is very close to the valuef 5dn, whered is the
dimensionality of the system andn is the critical exponent of
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the connectedness lengthj, predicted in Ref.@11# which in
the three-dimensional~3D! model givesf ;2.64 ~in mean
field bothdn and the random resistor network exponent a
equal to three!. Following the argument in Ref.@11# this
exponent would then correspond to the case of a domina
entropic term, evaluated by means of scaling arguments
the percolating network: the elastic energy of the system
due to the entropic elasticity of the macrolink whose leng
is of the order of the connectedness correlation length.
nally the valuef ;4 can be linked to the prediction of th
bond-bending modelf 5dn11 @12,13# or, alternatively, f
5t12n @14,15#, which in 3D givef ;3.7. This would imply
that within the elastic energy describing the system there
bending term playing a relevant role in the elastic respo
of the network. This critical behavior is typical of some co
loidal gels@16#. The clustering of the experimental values f
the elasticity critical exponent in gels around discrete val
suggests the possibility of correspondently individuating d
ferent universality classes, which should be characterized
some intrinsic features of the networks formed in the ma
rials.

Recent numerical studies via molecular dynamics@5# and
Monte Carlo simulations@6# of percolating networks of teth
ered particles with no hard core interactions have shown
the shear modulus critical exponent is;1.3 in d52 and
;2.0 in d53. Monte Carlo simulations of two- and three
dimensional percolating networks of tethered particles w
hard core repulsion@6# find consistent results for the she
modulus critical exponent. These results agree with the
Gennes prediction and with some experimental results.

Within the numerical studies we have approached
study of this problem introducing a percolation dynam
model, and directly investigating the dynamic viscoelas
properties as the percolation transition takes place.
model introduces in the percolation model the bon
fluctuation dynamics, which takes into account the conf
mational changes of the polymer molecules and the exclu
volume interactions. This model has been translated in a
tice algorithm and studied via numerical simulations on h
percubic lattices. Actually it presents many fundamental f
tures of the gelation phenomenology and has already allo
the study of the critical behavior of the viscoelastic prop
ties and the relaxation process in gelling systems in the
phase@19#. Numerical simulations of the model ind52 @20#
have shown that the elasticity critical exponent is;2.7, a
©2002 The American Physical Society03-1
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value that agrees with the predictionf 5dn in @11#. The
study of the model ind53 can serve to check the elastici
critical behavior and to eventually compare the findings w
the experimental results. We present here the results of l
scale 3D simulations: the data show thatf ;2.560.1, again
in agreement with the predictionf 5dn, coherently with the
findings ind52.

In the following section we present the model and t
details of the numerical simulations, in Sec. III the elas
response of the percolating cluster is discussed and a sc
behavior is obtained; in Sec. IV the results of the numeri
simulations are presented and discussed; Sec. V con
concluding remarks.

II. MODEL AND NUMERICAL SIMULATIONS

We consider a solution of tetrafunctional monomers
concentrationp. The monomers interact via excluded volum
interactions, i.e., a monomer occupies a lattice elemen
cell and two occupied cells cannot have common sites. N
est neighbors or next-nearest neighbors are instantaneo
linked by a permanent bond with probabilitypb . In terms of
these two parameters the percolation line can be determ
via the critical behavior of the percolation properties, in
viduating the sol and the gel phase in the system. Actuall
the simulation we fixpb51 and study the system varyingp
@19–21#. The percolation quantities critical exponents ag
with the random percolation predictions@18# ~e.g., g.1.8
60.05 andn.0.8960.01 in 3D @19#!. The monomers free
or linked in clusters diffuse via random and local moveme
on the lattice according to the bond-fluctuation dynam
@22#, which is ruled by the possibility of varying the bon
lengths within a set of values determined by the exclud
volume interactions and the self-avoiding walk conditio
This produces a high number of different bond vectors a
we consider the case of permanent bonds, which corresp
to the strong gelation process. In 3D the allowed bo
lengths on the cubic lattice arel 52,A5,A6,3,A10 and in Fig.
1 an example of different allowed configurations for a po
mer molecule is shown.

We present here the results of extended numerical si
lations of the model in the gel phase to study the ela
response in the system. It is worth noticing that there is
elastic potential energy for the bond vectors and then
elastic behavior is purely entropic implying that our study
performed at finite temperature.

The data presented here refer to lattice sizesL ranging
from 12 to 32, and have been averaged over 30 differ
realizations. The simulations have been performed on
CRAY-T3E system at CINECA taking more than 30 00
h/node ofCPU time.

III. ELASTIC RESPONSE IN THE GEL PHASE

We study the elastic response in the gel phase in term
the macroscopic elastic constant of the systemK, which is
experimentally defined as the ratio between an applied ex
nal force and the deformation. In a simple elongation exp
ment if l 0 is the undeformed length andd5( l 2 l 0) is the
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deformation in the system, within the linear response
proximation the elastic free energyF;Kd2. In terms of the
Young elastic modulusE the free energy per unit volume i
F/V;Ed2/ l 0

2. ThenK;EV/ l 0
2 and for a cube of sizeL, K

;ELd22, expressing the fact that the elastic modulus has
dimensions of an energy per unit volume and is an intens
quantity, whereasK depends on the system sizeL.

In the gel, sinceE vanishes atpc as ;j2 f̃ ~where f̃
5 f /n! one has

K;Ld22j2 f̃ . ~1!

Following Eq. ~1! the macroscopic elastic constant prese
the corresponding scaling behaviors as function of the s
tem sizeL and of the distance from the percolation thresho
(p2pc),

p.pc K;Ld22,

p5pc K;L2 z̃,

fixed L K;~p2pc!
f , ~2!

wherez̃5 f̃ 2(d22).
An alternative way to obtain these scaling relations is

consider the percolating cluster as a network of nodes c
nected by macrolinks of linear sizej @23#. Each macrolink
can be considered as a spring with an effective elastic c
stant. At the percolation threshold there is only one m
rolink spanning the system and its effective elastic cons
coincides with the system macroscopic elastic constantK.

In order to evaluateK we notice that for a spring of elasti
constantK in a thermal bath at temperatureT, the mean
fluctuation in the energyU is ^DU&5 1

2 K^x2&, wherex is the
spring elongation. From the energy equipartitionK^x2&

FIG. 1. An example of time evolution of a cluster formed b
four monomers according to the bond-fluctuation dynamics: ina,
starting from the upper central bond and clockwise, the bo
lengths arel 5A5,3,3,2; inb the upper left monomer has move
forward andl 52,3,3,A5; having moved right the other left mono
mer in b one hasc with l 52,3,A6,A6; moving right the front
monomer in c the d configuration is obtained with l
52,A10,A6,A6.
3-2
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ELASTIC CRITICAL BEHAVIOR IN A THREE- . . . PHYSICAL REVIEW E 65 041803
5kBT, so that at the equilibrium the elastic constantK is
related to the the fluctuations in the spring length@24–27#.
This result can be more generally obtained by means of
Fokker-Plank equation for the probability distribution of th
spring elongation@24#.

Therefore, the macroscopic elastic constant of the
phase is related to the fluctuations of the linear size of
infinite cluster, i.e., the squared fluctuations in the gyrat
radius of the percolating cluster^DRg

2&5Š(Rg2^Rg&)
2
‹, K

;1/̂ DRg
2&.

An alternative way to calculate the macroscopic elas
constant in the gel phase by means of the fluctuations in
unperturbed system is to consider the center of mass of
percolating cluster as a brownian particle, subject to a res
ing force responsible for the elastic behavior of the syste
The restoring force introduces a limitation on the diffusi
process of a brownian particle. Using the same argum
based on the energy equipartition, the asymptotic equilibr
value D of its displacement fluctuationŝDR2(t)& is in-
versely proportional to the elastic constant, i.e.,D;1/K.

IV. RESULTS

In order to numerically study the elastic response we h
used both the approaches mentioned before, namely, we
calculated the average fluctuation of the gyration radius
the percolating cluster̂DRg

2& and the asymptotic valueD of
the mean square displacement of its center of mass^DR2(t)&
@28#.

In the first approach the average fluctuation in the gy

FIG. 2. Log-log plot of the fluctuation of the percolating clust
gyration radiuŝ DRg

2& as a function of the lattice sizeL at pc : from

the fit of the data the critical exponentz̃;1.960.1 is obtained. Here
and in the following figures the lengths are expressed in units
lattice spacing.
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tion radius^DRg
2& of the percolating cluster has been com

puted at the percolation threshold in system of different s
L with periodic boundary conditions. In Fig. 2^DRg

2& at pc is
shown in a log-log plot as function of the lattice sizeL. In
the considered range the data are well fitted by a power
behavior according to Eq.~2!, giving a critical exponentz̃
;1.960.1, i.e., z;1.760.1. As z̃5 f̃ 2(d22), f 5z
1(d22)n and this result givesf ;2.660.1.

In the second approach we have calculated^DR2(t)& at
different steps of the gelation process, i.e., asp grows above
the percolation thresholdpc;0.71860.005 @19#, and atpc
for different lattice sizes. In these simulations hard-w
boundary conditions have been used@29#. In the gel at the
gelation transition the percolating cluster is a quite loo
network, the center of mass is rather free and the ela
response is weak. As the gelation process goes on, the
work tightens becoming more rigid, the elastic constant
the system increases and the center-of-mass motion is
gressively constrained. This would then be the physi
mechanism producing the critical behavior of the elastic
sponse for a critical gel. In agreement with our pictu
^DR2(t)& grows with time up to a limiting plateau valueD
as it is shown in Fig. 3. This quantity is inversely propo
tional to the elastic constant of the systemD;1/K and in-
creases as the percolation threshold is approached
above. In Figs. 4, 5, and 6 the scaling behavior obtained
D is presented.

In Fig. 4 D(L,p) for p@pc (p50.85) is shown in a

f

FIG. 3. The mean square displacement of the center of mas
the percolating cluster̂DR2(t)& as function of time for different
value of the monomer concentrationp: from below p
50.8,0.77,0.76,0.75. The dashed lines correspond to the asymp
plateau valuesD, which grows approachingpc . The data refer to a
lattice sizeL532. The unit time here is the Monte Carlo step p
particle.
3-3
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double logarithimic plot: being far from the percolatio
threshold the system is reasonably homogeneous and in
the scaling behavior asD;L20.9960.1 is observed, in agree
ment with the behaviorK;Ld22.

In Fig. 5D(L,p5pc) is shown in a double logaritmic plo
as a function of the lattice sizeL: the data exhibit a behavio

FIG. 4. Log-log plot ofD(L,p) for p@pc ~the data refer top
50.85! as function of L: the data show a scaling behavio
;1/L0.9960.1.

FIG. 5. Log-log plot of the plateau valuesD(L,p5pc50.718)
as function ofL: the data are fitted by a power law giving th

critical exponentz̃;2.060.1.
04180
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D;Lz̃ with z̃;2.060.1. This result again givesf ;2.6
60.1. Finally in Fig. 6D(p2pc) is plotted for the lattice
sizeL532: we fit the data with a power law behavior@Eq.
~2!# and obtain a critical exponentf ;2.560.1.

It is straightforward to notice that all these numerical r
sults can be coherently interpreted in terms of the sca
relations obtained forK.

The value of the critical exponentf ;2.6 is in good agree-
ment with the predictionf 5dn of Ref. @11#, therefore, sup-
porting the picture proposed there, and consistent with
value obtained in the 2D study of the model@20#.

Due to the limited extension of the critical parameterp
2pc) and ofL here investigated the eventual occurrence o
crossover to a different exponent cannot be excluded.

V. CONCLUSIONS

The numerical results of Figs. 2, 5, and 6 show thaz̃
52.0, coherently agreeing with the predictionf 5dn. On the
whole they support the scaling picture we propose and
argument of Ref.@11#. They also agree with some exper
mental results@7–10#. This result has been obtained via tw
independent calculations giving consistent numerical val
and is also consistent with the value previously obtained
the 2D study.

On the other hand the recent numerical works on entro
elastic models of Refs.@5,6# find a good agreement with th
de Gennes prediction. These results, together with the exp
mental data, seem to suggest the possibility that there are
distinct universality classes characterized one by an expo
f 5dn and another by the electrical analogy exponentf 5t,
which in 3D are, respectively,;2.64 and;2.0. However,
since the models in the different numerical studies are ra

FIG. 6. The plateau valuesD„L532,(p2pc)… in a double loga-
rithmic plot as function of (p2pc): the best fit of the data close t
the percolation threshold gives the critical exponentf ;2.560.1.
3-4
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similar the possibility of a crossover between different d
namic regimes, as it is observed in some experiments@3#,
cannot be completely excluded. In both cases these re
give a hint for the interpretation of the experimental data a
indicate the aspects which should be further investigated
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1
2 K^x2&2^ f x&. If we assume that

^ f x&; f ^x& the mean fluctuation of the energy is again giv
by ^DU&5

1
2 KŠ(x2^x&)2

‹, with ^x&5 f /K. On the other hand
^x(]U/]x)&5KBT5K^x2&2 f ^x& and with the assumption
^ f x&; f ^x& gives K(^x2&2^x&2)5KBT. Then again^Dx2&
5(^x2&2^x&2);1/K.
3-5


